Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Math Biosci Eng ; 20(4): 6134-6173, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2258077

ABSTRACT

An expanding field of study that offers fresh and intriguing approaches to both mathematicians and biologists is the symbolic representation of mathematics. In relation to COVID-19, such a method might provide information to humanity for halting the spread of this epidemic, which has severely impacted people's quality of life. In this study, we examine a crucial COVID-19 model under a globalized piecewise fractional derivative in the context of Caputo and Atangana Baleanu fractional operators. The said model has been constructed in the format of two fractional operators, having a non-linear time-varying spreading rate, and composed of ten compartmental individuals: Susceptible, Infectious, Diagnosed, Ailing, Recognized, Infectious Real, Threatened, Recovered Diagnosed, Healed and Extinct populations. The qualitative analysis is developed for the proposed model along with the discussion of their dynamical behaviors. The stability of the approximate solution is tested by using the Ulam-Hyers stability approach. For the implementation of the given model in the sense of an approximate piecewise solution, the Newton Polynomial approximate solution technique is applied. The graphing results are with different additional fractional orders connected to COVID-19 disease, and the graphical representation is established for other piecewise fractional orders. By using comparisons of this nature between the graphed and analytical data, we are able to calculate the best-fit parameters for any arbitrary orders with a very low error rate. Additionally, many parameters' effects on the transmission of viral infections are examined and analyzed. Such a discussion will be more informative as it demonstrates the dynamics on various piecewise intervals.


Subject(s)
COVID-19 , Epidemics , Humans , COVID-19/epidemiology , Quality of Life , Health Personnel
2.
Comput Methods Biomech Biomed Engin ; 25(15): 1722-1743, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1795520

ABSTRACT

Very recently, Atangana and Baleanu defined a novel arbitrary order derivative having a kernel of non-locality and non-singularity, known as AB derivative. We analyze a non-integer order Anthroponotic Leshmania Cutaneous (ACL) problem exploiting this novel AB derivative. We derive equilibria of the model and compute its threshold quantity, i.e. the so-called reproduction number. Conditions for the local stability of the no-disease as well as the disease endemic states are derived in terms of the threshold quantity. The qualitative analysis for solution of the proposed problem have derived with the aid of the theory of fixed point. We use the predictor corrector numerical approach to solve the proposed fractional order model for approximate solution. We also provide, the numerical simulations for each of the compartment of considered model at different fractional orders along with comparison with integer order to elaborate the importance of modern derivative. The fractional investigation shows that the non-integer order derivative is more realistic about the inner dynamics of the Leishmania model lying between integer order.


Subject(s)
Leishmania
3.
Comput Methods Biomech Biomed Engin ; 25(16): 1852-1869, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1713383

ABSTRACT

We investigate the dynamical behavior of Coronavirus (COVID-19) for different infections phases and multiple routes of transmission. In this regard, we study a COVID-19 model in the context of fractal-fractional order operator. First, we study the COVID-19 dynamics with a fractal fractional-order operator in the framework of Atangana-Baleanu fractal-fractional operator. We estimated the basic reduction number and the stability results of the proposed model. We show the data fitting to the proposed model. The system has been investigated for qualitative analysis. Novel numerical methods are introduced for the derivation of an iterative scheme of the fractal-fractional Atangana-Baleanu order. Finally, numerical simulations are performed for various orders of fractal-fractional dimension.


Subject(s)
COVID-19 , Fractals , Humans , COVID-19/epidemiology
4.
Alexandria Engineering Journal ; 2022.
Article in English | ScienceDirect | ID: covidwho-1629418

ABSTRACT

In this manuscript, we investigate a nonlinear SIQR pandemic model to study the behavior of covid-19 infectious diseases. The susceptible, infected, quarantine and recovered classes with fractal fractional Atangana-Baleanu-Caputo (ABC) derivative is studied. The non-integer order ℘ and fractal dimension q in the proposed system lie between 0 and 1. The existence and uniqueness of the solution for the considered model are studied using fixed point theory, while Ulam-Hyers stability is applied to study the stability analysis of the proposed model. Further, the Adams-Bashforth numerical technique is applied to calculate an approximate solution of the model. It is observed that the analytical and numerical calculations for different fractional-order and fractal dimensions confirm better converging effects of the dynamics as compared to an integer order.

5.
Chaos Solitons Fractals ; 150: 111121, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1252557

ABSTRACT

In this article we study a fractional-order mathematical model describing the spread of the new coronavirus (COVID-19) under the Caputo-Fabrizio sense. Exploiting the approach of fixed point theory, we compute existence as well as uniqueness of the related solution. To investigate the exact solution of our model, we use the Laplace Adomian decomposition method (LADM) and obtain results in terms of infinite series. We then present numerical results to illuminate the efficacy of the new derivative. Compared to the classical order derivatives, our obtained results under the new notion show better results concerning the novel coronavirus model.

6.
Results Phys ; 24: 104046, 2021 May.
Article in English | MEDLINE | ID: covidwho-1144914

ABSTRACT

This manuscript addressing the dynamics of fractal-fractional type modified SEIR model under Atangana-Baleanu Caputo (ABC) derivative of fractional order y and fractal dimension p for the available data in Pakistan. The proposed model has been investigated for qualitative analysis by applying the theory of non-linear functional analysis along with fixed point theory. The fractional Adams-bashforth iterative techniques have been applied for the numerical solution of the said model. The Ulam-Hyers (UH) stability techniques have been derived for the stability of the considered model. The simulation of all compartments has been drawn against the available data of covid-19 in Pakistan. The whole study of this manuscript illustrates that control of the effective transmission rate is necessary for stoping the transmission of the outbreak. This means that everyone in the society must change their behavior towards self-protection by keeping most of the precautionary measures sufficient for controlling covid-19.

7.
Chaos Solitons Fractals ; 140: 110232, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-728474

ABSTRACT

This paper is devoted to investigation of the fractional order fuzzy dynamical system, in our case, modeling the recent pandemic due to corona virus (COVID-19). The considered model is analyzed for exactness and uniqueness of solution by using fixed point theory approach. We have also provided the numerical solution of the nonlinear dynamical system with the help of some iterative method applying Caputo as well as Attangana-Baleanu and Caputo fractional type derivative. Also, random COVID-19 model described by a system of random differential equations was presented. At the end we have given some numerical approximation to illustrate the proposed method by applying different fractional values corresponding to uncertainty.

SELECTION OF CITATIONS
SEARCH DETAIL